skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Senhora, Fernando V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Topology optimization problems typically consider a single load case or a small, discrete number of load cases; however, practical structures are often subjected to infinitely many load cases that may vary in intensity, location and/or direction (e.g. moving/rotating loads or uncertain fixed loads). The variability of these loads significantly influences the stress distribution in a structure and should be considered during the design. We propose a locally stress-constrained topology optimization formulation that considers loads with continuously varying direction to ensure structural integrity under more realistic loading conditions. The problem is solved using an Augmented Lagrangian method, and the continuous range of load directions is incorporated through a series of analytic expressions that enables the computation of the worst-case maximum stress over all possible load directions. Variable load intensity is also handled by controlling the magnitude of load basis vectors used to derive the worst-case load. Several two- and three-dimensional examples demonstrate that topology-optimized designs are extremely sensitive to loads that vary in direction. The designs generated by this formulation are safer, more reliable, and more suitable for real applications, because they consider realistic loading conditions. 
    more » « less